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STUDY OF THE UNSTEADY TEMPERATURE FIELD IN A SPHERICAL BODY
USING CHEBYSHEV—LAGUERRE POLYNOMIALS

V. A. Galazyuk and Ya. Yu. Kolyano UDC 536.2

We discuss a method of solving axisymmetric boundary-value problems for the
parabolic heat equation in spherical coordinates based on the use of
Chebyshev—Laguerre polynomials.

The unsteady heat conduction of a spherical body subject to nonuniform axisymmetric
heating of its surface reduces to the solution of a boundary-value problem for the parabolic
heat equation. The Laplace transform in time leads to significant computational difficulties
in this case. We discuss a new method of finding the unsteady temperature field in a spherical
body subject to local heating. The method is based on the use of Chebyshev-Laguerre poly-
nomials [1].

1. Consider a hollow sphere and define'spherical coordinates (r, 0,¢9) in the usual way.
The outer and inner surfaces of the sphere are subject to heat exchange according to Newton's
law into media with temperatures Tt(e, F), respectively.

The temperature field T(y, 6, F) inside the sphere is found by solving the following axi-
symmetric mixed initial-value—boundary-~value problem:

19 9T ¢ g (sine or )— T | _1<y<l, 0<0<n
——— ——— — =" - = 1 ’ 1
(+evP o [(H_W) v ]+ (I +ey)sin® 98 a0 oF S7 SIS

(—‘;T-)* LB [T —TE(F, 0] =0, y==l, )
t
Tk, 6, =0, F<O, (3

where r = R(1 + ey) is the radius of the sphere, ¢ = h/R; F = at/h® is the Fourier number;

Bit = oh/A, are the Biot numbers on the surfacesy = *l.
The integral formula
o a
T am (%) = (m‘_;_-;—) 5 exp (—AF) L, (MFY [ § T (v, 8, F) Py, (cos6) sinedeJ dF, n, m=0, oo, (&)
b .

defines a double integral transform of the function T(y, 9O, F), where L,(AF) are the
orthogonal ChebyshewLaguerre polynomials; Pp(cos8) are the orthogonal Legendre polynomials
[2]; A is a positive parameter which we call the regularization parameter.

I. Franko State University, Lvov. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 52,
No. 5, Pp. 844-851, May, 1987. Original article submitted February 5, 1987.
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To(@ )= N Tun(¥) Prlcosd), n=0, oo, (5)

m=0

then the series

T(, 8 F)=» E Ty (v, 8) Ly (MF) (6)

serves as an inversion formula of the integral transform (4). Applying the integral trans-
form (4) to the problem (1)-(3), we obtain the problem

1 d &m (m 4 1) J =
P A nm A + T e Tnm =2 T my
A +ep dr [( e ) [ T+ e 20 0
dTym \* R +
(T) =+ Bi* [Tt—z_m — Tamz] = 03 vy = =*1. (8)

The general solution of the triangular system of ordinary differential equations (7) can
be written in the form [3}

Tom (v) = z AZE—J m (V) + Bll—-JWJm Wl (9

where Ay ;, Bi_ . are constants which can be determined from the boundary conditions (8). In

view of the structure of the general solution (9), the algebraic system of equations for the
arbitrary constants An; and B ; will always have the form of a triangular matrix. The
functions GJm(y) and W, (y) are linearly independent particular solutions of the system (7).
Using the following ea31ly verified identities for the modified spherical Bessel functions

[ 1 _.d_(xz d )ﬂ_l,_ﬂLm:r_,}lJ{x,— () = 2 KL (0,

X% dx dx X

[_l_d__(xz d ),_l_ﬂffj_ll}[xf P =207 ),

X2 dx dx

(10)

» )
(where x = —-1/8——(1 de9); ku(x), in(x) are the modified spherical Bessel functions [4]), the fun—

ctions Gjyp and Wim can be represented in the form
i
Gim (1) = 3, @i 1, (1), Gom (¥) = a0 im (¥),
i (11)
Wim @) = 3 Uik, (0, Wam (v) = 050 knm (1)

Substitution of these solutions into system (7) reduces the problem to a set of recursion
relations for the constants af, and b;}; (using the method of undetermined parameters):

1 -
aﬁ “_é_aralﬂ’ ]=1i, n
1 id — S
a =——Na}, =2, n k=1, j—1;
i k1 2+ 1) Ié;'; By ] I (12)
';'11 :_'—'—bgl07 ]‘" 17—;1_1
b wb s =2, n k=1, j—1
i R+1 Q(k—}—l) ; thy ] ]
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where the arbitrary constants gf; and pf, are determined from the normalization conditions.
We note that when ¢, = b7,

= (—1)ah, j=T,n k=1,] j>*k

2. When the heating of the spherical body is uniform (the centrally symmetric case)
the temperature field T(y, F) is determined by the following boundary-value problem:

1 3] oT oT
—_— —— [ (1 Fey)? =—, (13)
U+ o [( T ] OF
T \: | o s L
(—Ev—-) LBIE[TE _TEF) =0, y==%l, (14)
T(, F)=0, F<O, (15)
where TF (F) = ,S.(F), T (F) =0, f, = const.
From (4) withm =0
Tut)= [T (0, F) exp(—hF) Ly () dF (16)
is the solution of the boundary-value problem
1 d d o
——— (I ey — T, | — AT, =2 O T},
(1+eyp? dy [( + o) dy } k%o k an
dT, \* I M’ v=+I1,
—=} xBi'T; = A
dy (18)
09 Vz""l’
where ;
by={y 1]
0, iz%j (19)

is the Kronecker delta.

With the help of (9) the general solution of (17) takes the form

n

Tn(¥) = X [An—iG; (%) + By W, (7)), (19)

j=0

where A,_; and B,_;j- are constants determined from the boundary conditions (18), and the
functions Gj (y) and Wj (v) can be represented in the following form, with the help of (11):

f
Gi(9) =Y ana"in (), Go(¥) = oo o (%),
Pt (20)

7
Vi) = 3 (=D apt ki (x), Wy (y) = o ko (1).
k=1

Here k,(x)=k_x(x) [4], and the constants ajk are determined from recursion relations similar to

[12

1 ,  —
ajy = —2- Qoo, =1, 15
1 i=1 (21)
a; = T o Ay, j=2) n, = l’ j_— 1:
LA 9 (k4 1) ,;k

where the arbitrary constants doo is taken to be equal to unity in the calculations below.

The constants Ap-j and Bp-j can be found by substituting the general solution Tn(y) of
[17] (given by (19)) into the boundary conditions (18).

For n = 0 the problem (13)-(15) has the solution
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t,Bi
Ty(y) = 2

™) — Bivko (x7)] o (%) — [V o (x7)—Bi~i, (x7)] ko(x)), (22)
Mmm:A=rvMaﬁy+&ﬂdﬁmvaWﬂ*B“%@W‘“W@%Wﬂ****“ﬁ””du“jﬂBr“um;xt:
1/XM(1:E8% r denotes the derivative with respect to x.

Forn=1, 2, ..., we substitute (19) into the boundary conditions (18) and obtain a sys-
tem of algebraic equations for the constants Ap_j and Bp-j. Successive subtraction of this
system of equations reduces it to a system of algebraic equations for the constants Ap and Bp:

An [V (5) + Bito (¢9)] + Ba [VAks (+) + Bitko 60 = 17 (v=+1)
(23)

Ay [V R (87)—Bi~ip (x4 Bn [VAko (x7)— Biko (x7)]= f (y:_l)’

where

= Zn dG; \* sk | aw; ji BiEWE }
- ; ] : 3 >
"= j=1 {An_] |: ( dy ) =BG ] Fri [ ( dy | el

With the values of the coefficients A, and B, found from system (23), the solution of
problem (13)-(15) is determined from (6) by the following series

Tk, F)
t (24)

‘ RS
O (y, F) = 7—% ; [An-1G; (V) 4 BussW; (V)] L, (MF), O (y, F) =

3. We now find the solution of the problem (13)-(15) using finite integral transforms.
The function T(Y, F) is written as a sum

T, F)=T.(¥)+ T=(v, F)- (25)

Here Ty (y) is the solution of the steady-state problem

1 d dT
—_— (1 Feyr—2 | =0, (26)
(+ev? dv [( ERLA™ J
=
v o (27)
and has the form
1,BitT (1 1B (1
Ty =SB+ L+ B (149 (298)
(I4ev)(BY + B~ + 2B¥B")
where B* = BiT=x .
1+e
The function T3(y, F) is the solution of the nonsteady problem
1 0 oT oT
—_— ey —2 | = z, (29
(+ey o [( LR ] oF | )
0T, \* . \
(——a;) BT =0 (v==%1), (30)
To(v, 0)=—T1(v) (31)
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After performing the substitution T;(y, F)=1t;(v, F)/(1 + ey) (i =1, 2) we obtain

o N
A2 aF ' (32)

<ﬂ)ii3if2¢::0 (Y:il),

oy (33)

L(v, 0)=—1(v) (34)
whose solution can be found by reducing it to a Cauchy problem with the help of a finite inte-
gral transform with respect to the variable vy [5].

As the kernel of the finite integral transform in vy, we choose the orthonormal system
of functions

Pn (‘\’) = Oy, COS (MY + 6n)s

(35)
which are the eigenfunctions of the SturmLiocuville problem
®n + hnpn = 0,
(@) *£B*F =0 (v==1),
/ P
2hy, -+ sin 2h, + 12 (2, —sin 2),,)
Ansin A, — B™cos A, . (B~ ctgh, —A,)sink,
= , Si 6n = — e
AncOS A, 4+ B-sini, Vv AL + (B)?
cos §, — (A, clg A,; 4+ B7)sin A, )
Vi + By
where Ap are the roots of the transcendental equation
tgoh,  B++B-
= ’ 37
. A\—B*+B~ G7)
then the function t,(y, F) can be represented as the series:
t?‘ (Y’ F) = ZO tz,n (F) (Pn (Y)’ (38)
n=i
and
1 .
tan(F)= [ L(v, Pyon(v)dy. (39)
|
With the help of (39), (32), and the initial conditions (34) we find
dban
> Afayn =0,
ty 0 (0) = —ty,n = const.
The solution of the Cauchy problem (40) has the form
: 2,Bi+ (1 -+ €) s _ ( ’ sin An )] exp (— AZF)
tyn(F) = — g 14 B )A,sinA, —B By|cosh,— , 41
aun (F) B+ + B~ + 2B+B- [( + B7) Ansindn " " An (41)

where
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Fig. 1. Dependence of the dimensionless temperature ¢
on the Fourier number F for different Bit and e: a)
Bit = 0.5; b) Bit = 1, ¢) Bit = 10, d) Bit = 10.

A = 2,
n ]/ ) . 5 R )
Dhy -+ sin 20, + W2 (2N, — sin 24,)

B, = —nA,. (41)

Hence substituting (41) into (38), we obtain the sclution of the problem (32)-(34) and
therefore the required temperature field of the problem (13)-(15) takes the form
: ~+ VB__.
o, = BrU+e  1+B 0+
14+ey \NB+-L B~ 4 2B+B-

% {An c0s [ho (1 + ¥)1 + B7sin [Ay (i + 7)1} exp (— A7 F)
& A {An [1 + 2(B++B")+B+B /Ay }sin 2h,+ 20, (As—B+B~)cos 24,

(42)

where @(y, F)=T (v, F)o.

We note that the solution of (13)-(15) found with the help of the Laplace transform can
also be written in the form (42).

4. The solution was computed numerically using (24) and (42) for y = —1, Bi = 0 (corre~
sponding to a thermally insulated inener surface for the sphere), Bit = 0.5, 1, 10. The re-
sults are shown in Fig. 1, where the dashed curves show the temperature found by the Cheby-
shev--_Laguerre polynomial method, and the solid curves show the temperature found using finite
integral transforms or the Laplace transform. The regularization parameter A was chosen to
be unit and the series (24) and (42) were cut off at n = 30 and n = 10, respectively. We
note that by adjusting the regularization parameter, it is possible to obtain the same
temperature field by the different methods over the entire interval of the time wvariable,
so long as the argument of the functions L,(AF) satisfies the condition AF=C 5. It can
also be shown that when the relative thickness satisfies e = 0.03, the temperature field
inside a spherical body is the same as that inside a layer of thickness 2h (¢ = 0) for the
same initial and boundary conditions to within an error of no more than 5%.

NOTATION

T, temperature; r, 0, ¢ , spherical coordinates; v, time; R, mean radius; h, half-
thickness of the spherical wall; v, dimensionless coordinate normal to the surface of the
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spheres; a,Ay, thermal diffusivity and thermal conductivity, respectively; at, coefficients
of heat exchange with the surfaces Y = *1; Tg temperatures of the external media interacting

with the surfaces v = *1; @ (y, F), dimensionless temperature; to, initial temperature.
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